
© 2019 P&E Microcomputer Systems, Inc. v. 1.00, September 2019

ICDPPCNEXUS User Guide

1 Introduction
PEmicro's ICDPPCNEXUS for Windows is a powerful tool for debugging code on NXP’s
MPC55xx-57xx or STMicroelectronics’ SPC5 processors. The debugger comes with PEmicro's
PROGPPCNEXUS flash programmer, which is documented separately. ICDPPCNEXUS supports
BookE cores, VLE cores, and multiple cores.The debugger uses the processor's JTAG/Nexus
debug mode, via a hardware interface, to give the user access to all on-chip resources.

Figure 1-1: ICDPPCNEXUS Debugger

1.1 Trial Edition
You may evaluate ICDPPCNEXUS by downloading the PKGPPCNEXUS 64K Trial Edition from
pemicro.com. Please note that this trial download includes some extra software, such as a C
compiler, which is not part of ICDPPCNEXUS.

1.2 ICDPPCNEXUS Features At A Glance
• Full-speed in-circuit debug

• Breakpoints with counters on the Nth execution

• Variables window

• Support for multi-core as well as VLE, BOOKE, and mixed mode devices.

• Startup and Macro files for automating the debug process

• Context-sensitive help for all commands

• Symbolic register files to allow decoding of on-chip peripheral registers

• MMU memory map display

ICDPPCNEXUS In-Circuit Debugger - User Manual 2

• SPR display/modification

• Flash programming integrated into the debugger

• C source-level debugging based on ELF/DWARF 2.0 format

2 Command Line Parameters
To setup ICDPPCNEXUS to run with certain command line parameters, highlight the
ICDPPCNEXUS_PRO icon and select PROPERTIES from the Program Manager File Menu.

Syntax:
ICDPPCNEXUS_PRO [option] ... [option]

[option] Optional parameters are as follows:

lpt1…lpt3 Chooses lpt1, lpt2, or lpt3. The software will remember the last setting used.
pci1…pci6 Chooses which PCI card to communicate with. The software will remember

the last setting used.
pci_delay n Sets speed of PCI card shift clock, where n = 0…255. The equation for the

PCI card shift clock frequency is 33 * 10^6 / (5 + 2n).
running Starts ICD with CPU running (see Section 10 - Running).
io_delay_cnt n Causes the background debug mode clock to be extended by 'n' Cycles

where 1�=n�=64k. Used when using a very fast PC or a slow CPU clock.
(default = 1).

-scriptfile f A macro file that runs at the beginning of debug session. Check Section
11.49 - MACRO or SCRIPT - Execute a Batch File for more details

-resetfile f A macro file that runs each time the device resets. You can manually change
the script by going to Configuration Menu -> Automatic Script Options.

quiet Starts the ICD without filling the memory windows and the disassembly
window. Can be used for speed reasons or to avoid DSACK errors on startup
until windows are positioned or chip selects enabled.

-or-

path A DOS path to the directory containing the source code for source level debug
or a DOS path to a source file to be loaded at startup (path part is also saved).

Note: If more then one option is given, they must be separated by spaces.

Examples:
ICDPPCNEXUS_PRO lpt2 io_delay_cnt 2 Chooses lpt2, Causes the background debug mode

clock to be extended by 2 Cycles.

ICDPPCNEXUS In-Circuit Debugger - User Manual 3

Figure 2-1: Debugger Properties Dialog

Additionally, if a file named STARTUP.ICD exists in the current directory, it will be run as a macro at
startup. See the MACRO command for more information.

3 Nomenclature
Note the following:

n any number from 0 to 0FFFFFFFF (hex). The default base is hex. To enter numbers in
another base use the suffixes 'T' for base ten, 'O' for base eight or 'Q' for base two. You
may also use the prefixes '!' for base ten, '@' for base 8 and '%' for base two. Numbers
must start with either one of these prefixes or a numeric character. Example: 0FF = 255T =
377O = 11111111Q = !255 = @377 = %11111111

add any valid address (default hex).

[] optional parameter.

PC Program Counter points to the next instruction.

str ASCII string.

; Everything on a command line after and including the “;” character is considered a
comment. This helps in documenting macro (script) files.

ICDPPCNEXUS In-Circuit Debugger - User Manual 4

4 User Interface
Please note that certain user interface components may differ when using a multi-core device. For
more information, please view Section 5 - Dual Core Considerations.

• CPU Window

• Status Window

• Memory Window

• Variables Window

• Code Window

• Colors Window

4.1 CPU Window
The CPU Window displays the current state of the registers.

Note: The appearance of the CPU Window differs slightly when working with multi-core devices. You
may view Multi-Core CPU Window to see an example.

Figure 4-1: CPU Window

Use the tabs at the bottom of the window to display the 64 bit SPE registers.

ICDPPCNEXUS In-Circuit Debugger - User Manual 5

Figure 4-2: 64-Bit SPE Registers

Double-clicking on any of these registers displays a popup window where the user can modify the
register value. Commands are also associated with each of these registers that can be entered in
the Status Window. Special Purpose registers can be changed through the SPR command.

KEYSTROKES

The following keystrokes are valid while the CPU window is the active window:

F1 Shows this help topic
ESC Make the STATUS window the active window

4.1.1 Multi-Core CPU Window
The appearance of the CPU Window differs slightly when working with multi-core devices.
Examples showing the Multi-Core CPU Window with the General tab selected or a core-specific
tab selected are shown below:

ICDPPCNEXUS In-Circuit Debugger - User Manual 6

Figure 4-3: CPU Window & Multi-Core CPU Window

4.2 Status Window
The Status Window serves as the command prompt for the application. It takes keyboard
commands given by the user, executes them, and returns an error or status update when needed.
Commands can be typed into the window, or a series of commands can be played from a macro
file. This allows the user to have a standard sequence of events happen the same way every time.
Refer to the MACRO command for more information.
It is often desirable to have a log of all the commands and command responses which appear in
the status window. The LOGFILE command allows the user to start/stop the recording of all
information to a text file that is displayed in the status window.

Figure 4-4: Status Window

POPUP MENU

By pressing the RIGHT MOUSE BUTTON while the cursor is over the status window, the user is
given a popup menu which has the following options:

Help...

ICDPPCNEXUS In-Circuit Debugger - User Manual 7

Displays this help topic.

KEYSTROKES

The following keystrokes are valid while the status window is the active window:

UP ARROW Scroll window up one line
DOWN ARROW Scroll window down one line
HOME Scroll window to first status line
END Scroll window to last status line
PAGE UP Scroll window up one page
PAGE DOWN Scroll window down one page
F1 Shows this help topic

To view previous commands and command responses, use the scroll bar on the right side of the
window.

4.3 Memory Window
The Memory Window is used to view and modify the memory map of a target. View bytes by using
the scrollbar on the right side of the window. In order to modify a particular set of bytes, just double
click on them. Double-clicking on bits brings up a byte modification window.
When working with a multi-core device the user can toggle between cores using the drop-down
menu, shown in the upper left of the Memory Window below.

Figure 4-5: Memory Window

POPUP MENU
By pressing the RIGHT MOUSE BUTTON while the cursor is over the memory window, the user is
given a popup menu that has the following options:
Set Base Address
Sets the memory window scrollbar to show whatever address the user specifies. Upon selecting
this option, the user is prompted for the address or label to display. This option is equivalent to the
Memory Display (MD) Command.
Show Memory and ASCII

ICDPPCNEXUS In-Circuit Debugger - User Manual 8

Sets the current memory window display mode to display the memory in both HEX and ASCII
formats.
Show Memory Only
Sets the current memory window display mode to display the memory in HEX format only.
Help...
Shows this help topic.

KEYSTROKES
The following keystrokes are valid while the memory window is the active window:

UP ARROW Scroll window up one line
DOWN ARROW Scroll window down one line
HOME Scroll window to address $0000
END Scroll window to last address in the memory map.
PAGE UP Scroll window up one page
PAGE DOWN Scroll window down one page
F1 Shows this help topic
ESC Make the STATUS WINDOW the active window

4.4 Variables Window
Note: The appearance of the Variables Window differs slightly when working with multi-core devices.

You may view Multi-Core Variables Window to see an example.

The variables window allows the user to constantly display the value of application variables. The
following window shows a display of selected variables in the demonstration application:

Figure 4-6: Variables Window

Variables that are pointers are displayed in red. Normal variables are displayed in black. Real-time
variables are displayed in blue. A real-time variable is a variable that is updated even while the
processor is running.
Listing valid variables
After the debugger loads a valid ELF/DWARF2.0 file, several dialogs become available in the List

ICDPPCNEXUS In-Circuit Debugger - User Manual 9

Variables drop-down menu.
Figure 4-7: Variables Drop-Down Menu

The following dialogs are available:
List All Variables
Any valid symbol that is listed in the DWARF debugging infomation appears here. Double-click an
entry to add to the Variables window.
List Globals
Global symbols appear. Double-click an entry to add to the Variables window.
List Locals
Local symbols that are currently in scope appear. Double-click an entry to add to the Variables
window.
List Register Variables
If a variable resides in a register, rather than memory, it appears here regardless of scope. These
variables do not appear with the global or local symbols. Double-click an entry to add to the
Variables window.
List Functions
All functions, regardless of scope, appear on this dialog. Double-click an entry to show the source
code, if available.

Figure 4-8: List Functions Window

4.4.1 Using The Variables Window
• Adding And Deleting Variables
• Modifying A Variable's Value

ICDPPCNEXUS In-Circuit Debugger - User Manual 10

• Modifying A Variable's Properties
• Multi-Core Variables Window

4.4.1.1 Adding And Deleting Variables
Variables may be added via the VAR command in the status window, or by right clicking the
variables window and choosing “Add a variable.” Variables may be deleted by selecting them and
choosing delete. When adding variables, the user is presented with the following dialog:

Figure 4-9: Add/Delete Variable

In the variable field, the user should input the address or name of the variable that they would like
displayed in the variables window. The type of the variable should most often be set to “Default,”
which means that the variable will be shown as it is defined in the compiled/loaded application.
When adding a variable the user may also specify the numeric base in which the variable should
be displayed.

4.4.1.2 Modifying A Variable's Value
To modify the current value of a variable, double-click the variable name in the variables window. If
the debugger supports modification of this type of variable, the variable modification dialog will be
displayed. Make sure to check the “Modify value” checkbox. At this point the value may be altered
by the user. When the OK button is clicked, the variable value in the processor’s memory will be
updated and the variable window will be refreshed to display this value. Note that some user-
defined types, such as enumerated types, may not be editable in this fashion.

Figure 4-10: Modify Value

ICDPPCNEXUS In-Circuit Debugger - User Manual 11

4.4.1.3 Modifying A Variable's Properties
To modify a variable’s display properties, such as the type or numeric display base, double-click
the variable in the variables window. Check “Modify display properties” in the dialog that is then
displayed. At this point the type and base may be modified. When the OK button is clicked, the
variable in the variables window will update its value according to the new settings.

Figure 4-11: Modify Properties

4.4.2 Multi-Core Variables Window
The appearance of the Variables Window differs slightly when working with multi-core devices.

ICDPPCNEXUS In-Circuit Debugger - User Manual 12

The window will indicate from which core the data is being displayed. An example is shown below:

Figure 4-12: Multi-Core Variables Window

4.5 Code Window
Note: The appearance of the Code Window differs slightly when working with multi-core devices. You

may view Multi-Core Code Window to see an example.

The Code Window displays either disassembled machine code or the user's source code if it is
available. The "Disassembly" mode will always show disassembled code regardless of whether a
source file is loaded. The "Source/Disassembly" mode will show source code if source code is
loaded and the current PC points to a valid line within the source code, and shows disassembly
otherwise. To show both modes at once, the user should have two code windows open and set
one to "Disassembly" and the other to "Source/Disassembly".
Code windows also give visual indications of the Program Counter (PC) and breakpoints. Each
code window is independent from the other and can be configured to show different parts of the
user's code.

ICDPPCNEXUS In-Circuit Debugger - User Manual 13

Figure 4-13: Code Window

POPUP MENU
By pressing the RIGHT MOUSE BUTTON while the cursor is over the code window, the user is
given a popup menu that has the following options:
Toggle Breakpoint at Cursor
This option is enabled if the user has already selected a line in the code window by clicking on it
with the LEFT MOUSE BUTTON. Choosing this option will set a breakpoint at the selected
location, or if there is already a breakpoint at the selected location, will remove it.
Set PC at Cursor
This option is enabled if the user has already selected a line in the code window by clicking on it
with the LEFT MOUSE BUTTON. Choosing this option will set the Program Counter (PC) to the
selected location.
Gotil Address at Cursor
This option is enabled if the user has already selected a line in the code window by clicking on it
with the LEFT MOUSE BUTTON. Choosing this option will set a temporary breakpoint at the
selected line and starts processor execution (running mode). When execution stops, this
temporary breakpoint is removed.
Set Base Address
This option allows the code window to look at different locations in the user's code, or anywhere in
the memory map. The user will be prompted to enter an address or label to set the code window's
base address. This address will be shown as the top line in the Code Window. This option is
equivalent to the SHOWCODE command.
Set Base Address to PC

ICDPPCNEXUS In-Circuit Debugger - User Manual 14

This option points the code window to look at the address where the program counter (PC) is. This
address will be shown as the top line in the Code Window.
Select Source Module
This option is enabled if a source-level map file is currently loaded, and the windows mode is set to
"Source/Disassembly". Selecting this option will pop up a list of all the map file's source filenames
and allows the user to select one. This file is then loaded into the code window for the user to view.
Show Disassembly or Show Source/Disassembly
This option controls how the code window displays code to the user. The "Show Disassembly"
mode will always show disassembled code regardless of whether a source file is loaded. The
"Show Source/Disassembly" mode will show source-code if source code is loaded and the current
PC points to a valid line within the source code, and shows disassembly otherwise.
In disassembly mode, the base address of the code window is the first line showing in the window
when the scrollbar is at the top. Due to the nature of disassembly, you cannot scroll backwards
arbitrarily, and hence you must have a starting point. This starting point is the base address. The
base address can be set using the SHOWCODE command or by using the popup menu of the
code window. The base address has no meaning in source-level mode unless the user tries to
change it (again, refer to the showcode command).
Help
Displays this help topic.
KEYSTROKES

The following keystrokes are valid while the code window is the active window:

UP ARROW Scroll window up one line
DOWN ARROW Scroll window down one line
HOME Scroll window to the Code Window's base address.
END Scroll window to last address the window will show.
PAGE UP Scroll window up one page
PAGE DOWN Scroll window down one page
F1 Shows this help topic
ESC Make the STATUS window the active window

4.6 Using The Code Window
• Using Code Window Quick Execution Features
• Using Code Window Popup Debug Evaluation Hints
• Multi-Core Code Window

4.6.1 Using Code Window Quick Execution Features
In the source code window, there will be a tiny red dot and a tiny blue arrow next to each source
instruction that has underlying object code. If a large blue arrow is shown on a source line, this
indicates that the program counter (PC) points to this instruction. If a large red stop sign appears
on the source line, this indicates that a breakpoint is set on this line. A close-up of the code may be
seen below:

ICDPPCNEXUS In-Circuit Debugger - User Manual 15

Figure 4-14: Code Close-Up

The user may set a breakpoint at an instruction by double-clicking the tiny red dot,. When the user
issues the HGO command or clicks the high-level language GO button on the debugger button
bar, execution will begin in real-time. If the debugger encounters a breakpoint, execution will stop
on this source line. If a breakpoint is not encountered, execution will continue until the user
presses a key or uses the stop button on the debugger button bar. To remove a breakpoint,
double-click the large red stop sign.
By double-clicking the tiny blue arrow, the user will be issuing a GOTIL command to the address of
this source line. A GOTIL command will set a single breakpoint at the desired address, and the
processor will begin executing code in real-time from the point of the current program counter
(PC). When the debugger encounters the GOTIL address, execution will stop. If this location is not
encountered, execution will continue until the user presses a key or uses the stop button on the
debugger button bar. Note that all set breakpoints are ignored when the GOTIL command is used.
The disassembly window also supports double-clicking of the red and blue symbols, and there is
an additional symbol that may appear: a small blue S enclosed in a box. This indicates that a
source level instruction starts on this disassembly instruction. An image of this is shown here:

Figure 4-15: Source Level Instruction

4.6.2 Using Code Window Popup Debug Evaluation Hints
When debugging source code, it is often advantageous to be able to view the contents of a
variable that appears in the source code. The in-circuit debugger has a feature called “debug hints”
which, when active, will display the value of a variable while the mouse cursor is held still over the
variable name in the code window. The hint may be displayed in one of three locations, as shown
below:

Figure 4-16: Hint Locations

The three configurable locations are the code window title bar, the status window caption bar, or a
popup that is displayed until the mouse is moved. The hint can be displayed in any combination of
the three locations. Locations where the popup hints are displayed are set in the configuration

ICDPPCNEXUS In-Circuit Debugger - User Manual 16

menu of the debugger.
The information displayed in the hint box is similar to the information displayed in the variables
window. A close-up image of this hint box is shown here:

Figure 4-17: Hint Box

The information shown is the variable name (date_var), value (Thursday), and type (generalized C
language enumeration).

4.6.3 Multi-Core Code Window
The appearance of the Code Window differs slightly when working with multi-core devices. Note
the radio buttons which allow the user to toggle between cores. An example of the Multil-Core
Code Window is shown below:

Figure 4-18: Multi-Core Code Window

4.7 Colors Window
The Colors Window shows the colors that are set for all of the debugger windows. In order to view
the current color in a window, select the item of interest in the list box and view the text in the
bottom of the window. To change the color in a window, select the item and then use the left
mouse button to select a color for the foreground or use the right mouse button to select a color for
the background. Some items will only allow the foreground or background to be changed. Press

ICDPPCNEXUS In-Circuit Debugger - User Manual 17

the OK button to accept the color changes. Press the Cancel button to decline all changes.

Figure 4-19: Colors Window

5 Dual Core Considerations
Some of the ICD’s windows and procedures differ slightly when working with a multi-core
processor.
CPU Window - The CPU window displays the CPU registers for both the e200z1 and e200z0
cores. ICD displays each core's register set on a separate tab.
Code Window - The Code Window displays source code for either the e200z1 or e200z0 core.
The user may switch between views using the radio buttons in the upper left corner of the Code
Window.
Memory Window - The Memory Window displays data for either the e200z1 or e200z0 core. The
user may switch between views using the radio buttons in the upper left corner of the Memory
Window.
Variables Window - There are two Variables Windows, one for the primary e200z1 core and
another for the secondary e200z0 core.
Commands - Most ICD Status Window commands operate on the primary e200z1 core. Use the
"Z0" prefix to issue ICD commands to the secondary e200z0 core only.
Example, Source Step:
HSTEP - high-level source step the primary e200z1 core.
Z0HSTEP - high-level source step the secondary e200z0 core.
Example, CPU Values and Names:
PC 100 - sets program counter on primary e200z1 core to 0x100.
Z0PC 100 - sets program counter on secondary e200z0 core to 0x100.

6 Command Recall
You can use the PgUp and PgDn keys to scroll through the past 30 commands issued in the
debug window. Saved commands are those typed in by the user, or those entered through macro
(script) files. You may use the ESC key to delete a currently entered line including one selected by
scrolling through old commands.
Note that only "command lines" entered by the user are saved. Responses to other ICD prompts
are not. For example, when a memory modify command is given with just an address, the ICD
prompts you for data to be written in memory. These user responses are not saved for scrolling;
however, the original memory modify command is saved.

ICDPPCNEXUS In-Circuit Debugger - User Manual 18

7 CPU Values & Names
CPU Values
Any CPU register with an alphabetic name (R1, PC etc.) may be changed by entering the name of
the register followed by a value and <Enter> key in the Status Window will result as:
>R1 7654321

This will change the value of the low 32 bits of the R1 register to hex value $7654321.
>R1H 23456789

This will change the value of the high 32 bits of the R1 register to hex value $23456789
>PC 100

The value of Program Counter register (PC) will be changed to hex value $100
>MSR 2000

This will turn on the floating point registers.
CPU Names:

REGISTERS
R0 ... R31
R0H ... R31H
PC
CR
MSR
XER
LR
CTR

Note: The SPR Command may be used to change the value of any special purpose register.

8 Boot Assist Module
The processor Boot Assist Module (BAM) would normally initialize the the processor. However,
when running the target application from the debugger, the BAM functionality is disabled. To
account for this, the debugger must run a script file on reset. The script initializes the memory of
the processor similar to the way in which the BAM would initialize the processor. The user can view
and modify all the script's initialization tasks.
The appropriate macro file should automatically run on reset. To run the script file manually, type
the MACRO command in the debugger status window or click the play macro button on the
debugger toolbar. Select the macro file MPC5500_any_init.mac, located in the installation
directory. The macro file MPC5500_any_init.mac does not initialize the external bus. You may run
the macro files MPC5500_ebi_32.mac or MPC5500_ebi_16.mac to configure the external bus for
32 bit or 16 bit memory. When the script file runs, if the debugger has not been configured to run in
silent mode, you will see a significant number of status messages scroll down the status window of
the debugger.
To configure the debugger macro to execute automatically on reset, select the debugger
Configuration menu, Automated Script Options dialog, shown here:

ICDPPCNEXUS In-Circuit Debugger - User Manual 19

Figure 8-1: Automated Script Options Dialog

9 Connection To Target
When you first run the software, you will see the Connection Assistant dialog box:

Figure 9-1: Connection Assistant Dialog

You may use this dialog box to connect to your target using one of PEmicro’s debugging interface
products. The dialog allows you to specify the type of PEmicro debugging interface hardware. You
may also select the CPU type, communications speed, and reset delay. If you wish, you may
disable the dialog box so that it will appear only on error.
Use the Connect button to reset the target. Use the Hotsync button to connect to the target without
resetting it.

10 Running
Sometimes it is desirable to leave the CPU running and exit the ICD debug software. To do this,

ICDPPCNEXUS In-Circuit Debugger - User Manual 20

use the GOEXIT command. To re-enter the ICD debug software, use the option RUNNING as a
parameter on the start up command line (see STARTUP). This option causes the debugger to not
do a RESET at startup and to ignore any STARTUP.ICD macro file. In order to use this option, the
CPU must have previously been left executing by the debugger.
Another way to re-enter the ICD without resetting the target is to use the Hotsync button on the
Connection Assistant.
It is possible to remove the ICD cable from your target system and then reconnect it provided that
the following sequence is observed:

1) Exit the ICD by using the GOEXIT command.
2) Disconnect cable without removing power connections.
3) Remove power from cable.
4) Do whatever...
5) Connect power to cable.
6) Start the ICD software using the RUNNING option.
7) Connect cable to your target.

11 Commands
NOTE: If using a multi-core device, a prefix may be used to issue a core-specific command.
Please see Dual Core Considerations for more information about command usage for multi-core
devices.

11.1 ADDSPR Command – Set User-Defined SPR Name
Sets user-defined SPR name to equal user-defined SPR number.

Note: Let str be the name of special purpose register <n>.

Syntax:
ADDSPR str <n>

Examples:
>ADDSPR MCSR 572T Machine Check Syndrome Register

11.2 ASCIIF3 and ASCIIF6 Commands – Toggle Memory Window
Toggles the memory windows between displaying [data only] // [data and ASCII characters].

ASCIIF3 toggles memory window 1.
ASCIIF6 toggles memory window 2.

Syntax:
ASCIIF3

Example:
>ASCIIF3 Toggles memory window 1 between displaying [data only] // [data and ASCII

characters].

ICDPPCNEXUS In-Circuit Debugger - User Manual 21

11.2.1 ASM Command - Assemble Instructions
The ASM command assembles instruction mnemonics and places the resulting machine code into
memory at the specified address. The command displays a window with the specified address (if
given) and current instruction, and prompts for a new instruction. If an instruction is entered and
the ENTER button is pressed, the command assembles the instruction, stores and displays the
resulting machine code, then moves to the next memory location, with a prompt for another
instruction. If there is an error in the instruction format, the address will stay at the current address
and an 'assembly error' flag will show. To exit assembly, press the EXIT button. See Instruction Set
for related information on instruction formats.

Syntax:
ASM [<address>]

Where:
<address> Address where machine code is to be generated. If you do not specify an

<address> value, the system checks the address used by the previous ASM
command, then uses the next address for this ASM command.

Examples:
With an address argument:

>ASM 100

The following window appears:

Figure 11-1: Connection Assistant Dialog

The user can type a new instruction in the edit box next to the 'New Instruction' text. In this
example, the instruction 'LWZU R5,20(R8)' is typed and then the ENTER button is pressed. As

ICDPPCNEXUS In-Circuit Debugger - User Manual 22

soon as ENTER is click the following window will appears

Figure 11-2: Connection Assistant Dialog

This window shows that address is incremented by 4 and the instruction at address is ADDI
R6,R4,0234. You can either enter another instruction or click EXIT to get out of this window.

11.3 BELL Command - Sound Bell
The BELL command sounds the computer bell the specified hexadecimal number of times. The
bell sounds once when no argument is entered. To turn off the bell as it is sounding, press any key.

Syntax:
BELL [<n>]

Where:
<n> The number of times to sound the bell.

Example:
>BELL 3 Ring PC bell 3 times.

11.4 BF or BLOCK FILL Command - Fill Block
The BF or FILL command fills a block of memory with a specified byte, word or long. The optional
variant specifies whether to fill the block in bytes (.B, the default), in words (.W) or in longs (.L).
Word and long must have even addresses.

Syntax:
BF[.B | .W | .L] <startrange> <endrange> <n>
FILL[.B | .W | .L] <startrange> <endrange> <n>

Where:
<startrange> Beginning address of the memory block (range).
<endrange> Ending address of the memory block (range).
<n> Byte or word value to be stored in the specified block.

The variant can either be .B, .W, .L, where:

ICDPPCNEXUS In-Circuit Debugger - User Manual 23

.B Each byte of the block receives the value.

.W Each word of the block receives the value.

.L Each word of the block receives the value.

 Examples:
>BF C0 CF FF Store hex value FF in bytes at addresses C0-CF.
>FILL C0 CF FF Store hex value FF in bytes at addresses C0-CF
>BF.B CO CF AA Store hex value AA in bytes at addresses C0-CF.
>FILL.B CO CF AA Store hex value AA in bytes at addresses C0-CF.
>BF.W 400 41F 4143 Store word hex value 4143 at addresses 400-41F.
>FILL.W 400 41F 4143 Store word hex value 4143 at addresses 400-41F.
>BF.L 1000 2000 8F86D143 Store long hex value 8F86D143 at address 1000-2000
>FILL.L 1000 2000 8F86D143 Store long hex value 8F86D143 at address 1000-2000

11.5 BGND_TIME Command - Log Time Since BGND Instruction
First, the processor execution is started at the current PC. Then, each time a BGND instruction is
encountered, the time since the last BGND instruction is logged in memory. Up to n points (default
= 500 and max = 500 data points) may be logged. The accuracy is somewhere in the microsecond
range. There is some positive time error to get in and out of background mode. In addition, while
the ICD software is storing the information, the target processor is not running which introduces a
real time error. One can determine the amount of time spent by the ICD to go into and out of BGND
mode by timing the execution of a string of BGND instructions and deducting this from the times
given. The data logging stops when 500 points have been logged or the operator presses a key.
The logged points are then written to the debug window and also to the capture file if enabled.

Syntax:
BGND_TIME [n]

Where:
nnumber of points logged

Example:
>BGND_TIME 4
The above command will give you four time differences (t1,t2,t3,t4).

 PC--------->BGND1----------->BGND2------------------------>BGND3------------------------>BGND4
 <-----t1------><---------t2-----------><------------t3----------------><---------------t4----------------->

11.6 BR Command - Set Or Clear Breakpoint
Sets or clears a breakpoint at the indicated address. Break happens if an attempt is made to
execute code from the given address. There are at most 7 breakpoints. They cannot be set at a
misaligned address. Typing BR by itself will show all the breakpoints that are set and the current
values for n.

Note: The first 2 breakpoints set are hardware breakpoints; after that the breakpoints are set through
software. Software breakpoints can only be set in RAM. Hardware breakpoints can be set
anywhere in memory.

ICDPPCNEXUS In-Circuit Debugger - User Manual 24

Syntax:
BR [add] [n]

Where:
add Address at which a break point will be set.
n If [n] is specified, the break will not occur unless that location has been executed n

times. After the break occurs, n will be reset to its initial value. The default for n is 1.

Examples:
>BR ; Shows all the breakpoints that are set and the current values for n.
>BR 100 ; Set break point at hex address 100.
>BR 200 5 ; Break will not occur unless hex location 200 has been executed 5 times.

11.7 CAPTURE Command - Open Capture File
Opens a capture file named 'filename'. Most outputs to the debug window are also sent to the
capture file. The user is prompted for information as to appending to or deleting the 'filename' file if
it already exists.

Syntax:
CAPTURE <filename>

Where:
<filename> Name of the file where commands and messages are stored.

Example:
>CAPTURE testfile Capture all the command and messages displayed at the debug window

into the file "TESTFILE.CAP".

11.8 CAPTUREOFF Command - Turn Off Capture
Turns off capturing of commands and messages at the debug window and closes the current
capture file.

Syntax:
CAPTUREOFF

Example:
>CAPTUREOFF Turns off capturing of commands and messages at the debug and window

closes the current capture file.

11.9 CLEARMAP Command - Clear Map File
The CLEARMAP command removes the current MAP file from memory. This will force the
debugger to show disassembly in the code windows instead of user source code. The user defined
symbols, defined with the SYMBOL command, will not be affected by this command. (The NOMAP
command is identical to CLEARMAP.)

Syntax:

ICDPPCNEXUS In-Circuit Debugger - User Manual 25

CLEARMAP

Example:
>CLEARMAP Clears symbol and source information.

11.10 CLEARSYMBOL Command - Clear User Symbols
The CLEARSYMBOL command removes all the user defined symbols. The user defined symbols
are all created with the SYMBOL command. The debug information from MAP files, used for
source level debugging, will be unaffected. The NOSYMBOL command is identical.

Note: Current user defined symbols can be listed with the SYMBOL command.

Syntax:
CLEARSYMBOL

Example:
>CLEARSYMBOL Clears user defined symbols.

11.11 CLEARVAR Command - Remove All Variables
The CLEARVAR command removes all the variables from the variables window.

Syntax:
CLEARVAR

Example:
CLEARVAR Removes all the variables from the variables window.

11.12 CODE Command - Show Disassembled Code
Shows disassembled code in the code window starting at address add. If you specify an address in
the middle of an intended instruction, improper results may occur.

Syntax:
CODE <add>

Where:
<add> Address where your code begins.

Example:
>CODE 100 Shows the disassembled code in the code window starting at hex address 100.

11.13 COLORS Command - Set Colors of Simulator
The COLORS command brings up a popup window, the Colors Window, that allows the user to
choose the text and background colors for all windows in the debugger. Once colors are selected
for the windows, use the SAVEDESK command to save them for all further debugging sessions.
See Colors Window for more information.

ICDPPCNEXUS In-Circuit Debugger - User Manual 26

Syntax:
COLORS

Example:
>COLORS Open the colors window.

11.14 COUNT Command - Display Execution Count
The COUNT command tells the user how many times each address in the internal counter table is
executed. If no address parameters are provided, the processor will execute from the current
Program Counter until an existing breakpoint is encountered, or the user presses a key. If the user
provides a starting address [add1], the processor will begin executing from this address until it
reaches the second address [add2], or if that parameter is not given, until an existing breakpoint is
encountered, or the user presses a key. When a breakpoint or keypress occurs, you are put into
the "Show Count" window. The count locations set in the source code window are shown in
descending order of executions. The percent is a rough percent of all counts. You may scroll in this
window using the cursor keys and return to the debug window by hitting F1.

The addresses in the internal counter table are set using the COUNTER command.

Syntax:
COUNT [add1] [add2]

Where:
add1 Go from first address.
add2 Set breakpoint at second address.

Example:
>COUNT 100 200 Start execution of the program at address 100 and stops at address 200.

11.15 COUNTER Command - Add Or Subtract From Counter Table
Adds or subtracts a location from the internal counter table. The user may then use the COUNT
command to count how many times each of the locations in the table executes. Using the
COUNTER command with no address shows the current table of counters.

Syntax:
COUNTER [add]

Where:
add Address to be added to, or removed from, the internal counter table.

Example:
>COUNTER 100 Add (or remove) a counter at hex location 100.
>COUNTER Shows all the current internal counters.

11.16 CR Command - Condition Register
The CR command sets the condition register (CR) to the specified hexadecimal value.

ICDPPCNEXUS In-Circuit Debugger - User Manual 27

Syntax:
CR <n>

Where:
<n> The new hexadecimal value for the CR.

Example:
>CR $C4 Assign the value C4 to the CR.

11.17 CTR Command - Counter Register
The CTR command sets the counter register (CTR) to the specified hexadecimal value.

Note: The counter register is used by the CPU for looping purposes. This register is also a special
purpose register.

Syntax:
CTR <n>

Where:
<n> The new hexadecimal value for the CTR.

Example:
>CTR $100 Assign the value $100 to the CTR.

11.18 DASM Command - Disassemble Memory
The DASM command disassembles machine instructions, displaying the addresses and their
contents as disassembled instructions in the status window. The memory locations between the
first and second addresses (add) are uploaded to the screen in the form of Bytes, Words, or Long
Words. The first address must be on an even boundary for Words or Long Words. If the capture
feature is active, the lines of dumped data are also sent to the capture file. Data is read as Bytes,
Words, or Long Words from the data space.

> If the command includes an address value, one disassembled instruction is shown, beginning at

that address.

> If the command is entered without any parameter values, the software finds the most recently

disassembled instruction then shows the next instruction, disassembled.

> If the command includes startrange and endrange values, the software shows disassembled

instructions for the range.

Note: If the DASM command is entered with a range, sometimes the disassembled instructions scroll
through the status window too rapidly to view. Accordingly, the LF command can be entered, which
records the disassembled instructions into a logfile, or use the scroll bars in the status window.

ICDPPCNEXUS In-Circuit Debugger - User Manual 28

Syntax:
DASM <address1> [<address2>] [n]

Where:
<address1> The starting address for disassembly. <address1> must be an instruction opcode. If

you enter only an <address1> value, the system disassembles three instructions.

<address2> The ending address for disassembly (optional). If you enter an <address2> value,
disassembly begins at <address1> and continues through <address2>. The screen
scrolls upward as addresses and their contents are displayed, leaving the last
instructions in the range displayed in the window.

n The optional parameter n determines the number of Bytes, Words, or Long Words which are
written on one line.

Examples:
>DASM 300

0300 A6E8 LDA #0E8
0302 B700 STA PORTA
0304 A6FE LDA #FE

>DASM 400 408

0400 5F CLRX
0401 A680 LDA #80
0403 B700 STA PORTA
0405 A6FE LDA #FE
0407 B704 STA DDRA

11.19 DUMP Command - Dump Data Memory to Screen
The DUMP command sends contents of a block of data memory to the status window, in bytes,
words, or longs. The optional variant specifies whether to fill the block in bytes (.B, the default), in
words (.W), or in longs (.L).

Note: When the DUMP command is entered, sometimes the memory contents scroll through the debug
window too rapidly to view. Accordingly, either the LF command can be entered, which records the
memory locations into a logfile, or the scroll bars in the status window can be used.

Syntax:
DUMP [.B | .W | .L] <startrange> <endrange> [<n>]

Where:
<startrange> Beginning address of the data memory block.
<endrange> Ending address of the data memory block (range).
<n> Optional number of bytes, words, or longs to be written on one line.

Examples:
>DUMP C0 CF Dump array of RAM data memory values, in bytes.

ICDPPCNEXUS In-Circuit Debugger - User Manual 29

>DUMP.W 400 47F Dump ROM code from data memory hex addresses 400 to 47F in
words.

>DUMP.B 300 400 8 Dump contents of data memory hex addresses 300 to 400 in rows of
eight bytes.

11.20 DUMP_TRACE Command - Dump Trace Buffer
Dumps the current trace buffer to the debug window and to the capture file if enabled.

Syntax:
Dump_Trace

Example:
>Dump_Trace

11.21 EVAL Command- Evaluate Expression
The EVAL command evaluates a numerical term or simple expression, giving the result in
hexadecimal, decimal, octal, and binary formats. In an expression, spaces must separate the
operator from the numerical terms.
Note that octal numbers are not valid as parameter values. Operand values must be 16 bits or
less. If the value is an ASCII character, this command also shows the ASCII character as well. The
parameters for the command can be either just a number or a sequence of : number, space,
operator, space, and number. Supported operations are addition (+), subtraction (-), multiplication
(*), division (/), logical AND (&), and logical OR (^).

Syntax:
EVAL <n> [<op> <n>]

Where:
<n> Alone, the numerical term to be evaluated. Otherwise either numerical term of a simple

expression.
<op> The arithmetic operator (+, -, *, /, &, or ^) of a simple expression to be evaluated.

Examples:
>EVAL 45 + 32
004DH 077T 000115O 0000000001001101Q "w"

>EVAL 100T
0064H 100T 000144O 0000000001100100Q "d"

EXECUTE_OPCODE Treats numeric parameter as an opcode and executes it.

11.22 EXECUTE_OPCODE Command - Treats Numeric Parameter As Opcode And Executes
Treats numeric parameter as an opcode and executes it.

Syntax:
EXECUTE_OPCODE <n>

ICDPPCNEXUS In-Circuit Debugger - User Manual 30

Where:
<n> Numeric opcode.

Examples:
>EXECUTE_OPCODE $7C0007A4
; tlbwe

11.23 EXIT or QUIT Command - Exit Program
The EXIT command terminates the software and closes all windows. If the debugger is called from
WINIDE it will return there. The QUIT command is identical to EXIT.

Syntax:
EXIT

Example:
>EXIT Finish working with the program.

11.24 FPSCR Command - Floating Point Status And Control Register
The FPSCR command sets the condition register (CR) to the specified hexadecimal value.

Syntax:
FPSCR <n>

Where:
<n> The new hexadecimal value for the CR.

Example:
> FPSCR $C4 Assign the value C4 to the CR.

11.25 FR(X) Command - Set Floating Point Register
The FR(x) command sets the value of the 32-bit Floating Point Register FR(x), where (x) is a value
from 0 to 31.

Syntax:
FR(x) [n]

Where:
(x) Value from 0 to 31, corresponding to which register the user intends to write.
[n] Value to be written to register.

Example:
FR3 20.345234 Writes value of 20.345234 to Floating Point Register FR3.

ICDPPCNEXUS In-Circuit Debugger - User Manual 31

11.26 G, GO/GOALL, or RUN Commands
The G or GO or RUN command starts execution of code in the Debugger at the current Program
Counter (PC) address, or at an optional specified address. When only one address is entered, that
address is the starting address. When a second address is entered, execution stops at that
address. The G or GO or RUN commands are identical. When only one address is specified,
execution continues until a key or mouse is pressed, a breakpoint set with a BR command occurs,
or an error occurs.
The GOALL command performs the same action (G, GO, RUN) on each core of a multi-core
device.

Syntax:
GO [<startaddr> [<endaddr>]]

Where:
<startaddr> Optional execution starting address. If the command does not have a <startaddr>

value, execution begins at the current PC value.
<endaddr> Optional execution ending address.

Examples:
>GO Begin code execution at the current PC value.
>GO 346 Begin code execution at hex address 346.
>G 400 471 Begin code execution at hex address 400. End code execution just before the

instruction at hex address 471.
>RUN 400 Begin code execution at hex address 400.
>GOALL 400 Begin code execution at hex address 400 on each core of a multi-core device..

11.27 GOEXIT Command - Begin Program Execution W/O Breakpoints & Terminate Debugger
Similar to GO command except that the target is left running without any breakpoints and the
debugger software is terminated.

Syntax:
GOEXIT [add]

Where:
add Starting address of your code.

Example:
>GOEXIT 100 This will set the program counter to hex location 100, run the program and exit

from the background debugging mode.

11.28 GOTIL Command - Execute Program until Address
The GOTIL command executes the program in the Debugger beginning at the address in the
Program Counter (PC). Execution continues until the program counter contains the specified
ending address or until a key or mouse is pressed, a breakpoint set with a BR command occurs, or
an error occurs.

ICDPPCNEXUS In-Circuit Debugger - User Manual 32

Syntax:
GOTIL <endaddr>

Where:
<endaddr> The address at which execution stops.

Example:
>GOTIL 3F0 Executes the program in the Debugger up to hex address 3F0.

11.29 GOTILROM Command - Execute Fast Single Step
Executes fast single steps without updating the screen, until the address is reached. This is the
fastest way to breakpoint in ROM.

Syntax:
GOTILROM [add]

Where:
 add Starting address of your code.

Example:
>GOTILROM 1000 This will do fast single steps from the location where your program counter is

set at and stops at hex location 1000 which in this example is the starting
location of the ROM. Starting location of the ROM depends on the memory
map of your system. After reaching hex 1000 you can do single step to debug
the code.

11.30 HELP Command - Open Help File
The HELP command opens the Windows help file for the program. If this command is entered with
an optional parameter, help information specifically for that parameter appears. If this command is
entered without any parameter value, the main contents for the help file appears.

An alternative way to open the help system is to press the F1 key.

Syntax:
HELP [<topic>]

Where:
<topic> a debug command or assembly instruction

Examples:
>HELP Open the help system

11.31 HGO Command - Begin Program Execution
The HGO command starts execution of code in the debugger at the current program counter (PC)
address. Execution continues until a key or mouse is pressed, a breakpoint set with a BR
command occurs, or an error occurs. If a key is pressed, real-time execution will stop and the
debugger will stop the processor until it reaches the next source instruction.

ICDPPCNEXUS In-Circuit Debugger - User Manual 33

Syntax:
 HGO

 Examples:
>HGO Step one source instruction.

11.32 HGOALL Command - Begin Program Execution (Multi-Core)
The HGOALL command is for Multi-Core devices It starts execution of code in the debugger on
each core at the current program counter (PC) address. Execution continues until a key or mouse
is pressed, a breakpoint set with a BR command occurs, or an error occurs. If a key is pressed,
real-time execution will stop and the debugger will stop the processor until it reaches the next
source instruction.

Syntax:
HGO (or HGOALL)

 Examples:
> HGO Step one source instruction.
> HGOALL Step one source instruction on each core of a multi-core device.

11.33 HLOAD Command - Load ELF/DWARF Object
The HLOAD command allows the user to load an ELF/DWARF, S19, or PEmicro map file.

Syntax:
HLOAD [<filename>]

Where:
<filename> The name of the object or debug file to be loaded.

 Examples:
> HLOAD MAIN.ELF Load the object and debug information in the ELF/DWARF file MAIN.ELF.

11.34 HLOADMAP Command - Load DWARF/MAP Debug Info
The HLOADMAP command loads a map file that contains source level debug information into the
debugger. This command only loads debug info, it does not load object and debug info.

Syntax:
HLOADMAP [<filename>]

Where:
<filename> The name of a map file to be loaded. The .MAP extension can be omitted. The

filename value can be a pathname that includes an asterisk (�) wildcard
character� If so, the command displays a lists of all files in the specified directory
that have the .MAP extension.

ICDPPCNEXUS In-Circuit Debugger - User Manual 34

Examples:
>HLOADMAP PROG.MAP Load map file PROG.MAP into the host computer.

11.35 HSTEP/HSTEPALL - High-Level Language Source Step
The HSTEP command allows the user to step one high-level language source instruction. This is
accomplished by rapidly single-stepping the processor on the assembly level.
The HSTEPALL command is for multi-core processors, and performs the same (HSTEP) action on
each core of a multi-core device.

Syntax:
HSTEP (or HSTEPALL)

 Examples:
> HSTEP Step one source instruction.
> HSTEPALL Step one source instruction on each core of a multi-core device.

11.36 HSTEPFOR - Step Forever (High-Level Language)
HSTEPFOR command continuously executes instructions, one at a time, beginning at the current
Program Counter address until an error condition occurs, a breakpoint occurs, or a key or mouse is
pressed. All windows are refreshed as each instruction is executed.

Syntax:
HSTEPFOR

Example:
>HSTEPFOR Step through instructions continuously

11.37 LISTON Command - Show Info during Steps
The LISTON command turns on the screen listing of the step by step information during stepping.
The register values and program instructions will be displayed in the status window while running
the code. The values shown are the same values seen by the REG instruction.
To turn off this step display, use the LISTOFF command.

Syntax:
LISTON

Example:
>LISTON Show step information.

11.38 LOAD Command (Legacy)
LOAD is a legacy command. Use the HLOAD command.

11.39 LOAD_BIN Command - Load A Binary File
Loads a binary file of bytes starting at address add. The default filename extension is .BIN.

ICDPPCNEXUS In-Circuit Debugger - User Manual 35

Syntax:
LOAD_BIN [filename] [add]

Where:
filename Name of the binary file
add Starting address

Example:
>LOAD_BIN myfile.bin 100 Loads a binary myfile of bytes starting at hex address 100

11.40 LOADALL Command (Legacy)
LOADALL is a legacy command. Use the HLOAD command.

11.41 LOADV Command (Legacy)
LOADV is a legacy command. Use the HLOAD command.

11.42 LOADV_BIN Command - Load A Binary File & Verify
First performs the LOAD_BIN command and then does a verify using the same file.

Syntax:
LOADV_BIN [filename] [add]

Where:
filename Name of the binary file
add Starting address

Example:
>LOADV_BIN myfile.bin 100 Loads a binary myfile of bytes starting at hex address 100 and then

does a verify using the same file.

11.43 LOADDESK Command - Load Desktop Settings
The LOADDESK command loads the desktop settings that set the window positions, size, and
visibility. This allows the user to set how the windows are set up for the application. Use
SAVEDESK to save the settings of the windows of the debugger into the desktop file.

Syntax:
LOADDESK

Example:
>LOADDESK Get window settings from desktop file.

11.44 LOADMAP Command (Legacy) - Load Map File
LOADMAP is a legacy command. Use HLOADMAP command.

ICDPPCNEXUS In-Circuit Debugger - User Manual 36

11.45 LOADV Command (Legacy)
LOADV is a legacy command. Use HLOAD command.

LOAD_BIN Load a binary file of byte. The default filename extension is .BIN.

LOADV_BIN Perform LOAD_BIN command, verify using the same file.

11.46 LF or LOGFILE Command - Open / Close Log File
The LF command opens an external file to receive log entries of commands and copies of
responses in the status window. If the specified file does not exist, this command creates the file.
The LOGFILE command is identical to LF.
If the file already exists, an optional parameter can be used to specify whether to overwrite existing
contents (R, the default) or to append the log entries (A). If this parameter is omitted, a prompt
asks for this overwrite/append choice.
While logging remains in effect, any line that is appended to the command log window is also
written to the log file. Logging continues until another LOGFILE or LF command is entered without
any parameter values. This second command disables logging and closes the log file.
The command interpreter does not assume a filename extension.

Syntax:
LF [<filename> [<R | A>]]

Where:
<filename> The filename of the log file (or logging device to which the log is written).

Examples:
>LF TEST.LOG R Start logging. Overwrite file TEST.LOG (in the current directory) with all lines

that appear in the status window.
>LF TEMP.LOG A Start logging. Append to file TEMP.LOG (in the current directory) all lines that

appear in the status window.
>LOGFILE (If logging is enabled): Disable logging and close the log file.

11.47 LPTx
Specifies which PC compatible parallel port should be used for the debugger. The port must be
fully PC compatible and a full 10-pin cable must be used.

Syntax:
LPTx

Where:
x 1, 2 or 3

Example:
LPT 2 Specifies that the debugger should use parallel port 2

ICDPPCNEXUS In-Circuit Debugger - User Manual 37

11.48 LR Command - Link Register
The LR command sets the link register (LR) to the specified hexadecimal value.

Syntax:
LR <n>

Where:
<n> The new hexadecimal value for the LR.

Example:
>LR $C4 Assign the value C4 to the LR.

11.49 MACRO or SCRIPT - Execute a Batch File
The MACRO command executes a macro file, a file that contains a sequence of debug
commands. Executing the macro file has the same effect as executing the individual commands,
one after another. Entering this command without a filename value brings up a list of macro (.MAC)
files in the current directory. A file can be selected for execution directly from this list. The SCRIPT
command is identical.

Note: A macro file can contain the MACRO command; in this way, macro files can be nested as many as
16 levels deep. Also note that the most common use of the REM and WAIT commands is within
macro files. The REM command displays comments while the macro file executes.

If a startup macro file is found in the directory, startup routines run the macro file each time the
application is started. See STARTUP for more information.

Syntax:
MACRO <filename>

Where:
<filename> The name of a macro file to be executed, with or without extension .MAC. The

filename can be a pathname that includes an asterisk(*) wildcard character. If so,
the software displays a list of macro files, for selection.

Examples:
>MACRO INIT.MAC Execute commands in file INIT.MAC.

>SCRIPT Display names of all .MAC files (then execute the selected file).

>MACRO A: Display names of all .MAC files in drive A (then execute the selected file).

>MACRO Display names of all .MAC files in the current directory, then execute the
selected file.

11.50 MACROEND Command - Stop Saving Commands to File
The MACROEND command closes the macro file in which the software has saved debug
commands. (The MACROSTART command opened the macro file). This will stop saving debug
commands to the macro file.

ICDPPCNEXUS In-Circuit Debugger - User Manual 38

Syntax:
MACROEND

Example:
>MACROEND Stop saving debug commands to the macro file, then close the file.

11.51 MACROSTART - Save Debug Commands to File
 The MACROSTART command opens a macro file and saves all subsequent debug commands to
that file for later use. This file must be closed by the MACROEND command before the debugging
session is ended.

Syntax:
MACROSTART [<filename>]

Where:
<filename> The name of the macro file to save commands. The .MAC extension can be

omitted. The filename can be a pathname followed by the asterisk (�) wildcard
character; if so, the command displays a list of all files in the specified directory
that have the .MAC extension.

Example:
>MACROSTART TEST.MAC Save debug commands in macro file TEST.MAC

11.52 MACS Command - List Macros
Brings up a window with a list of macros. These are files with the extension .ICD (such as the
STARTUP.ICD macro). Use the arrow keys and the <ENTER> key or mouse click to select. cancel
with the <ESC> key.

Syntax:
MACS

Example:
>MACS Brings up a list of MACROS

11.53 MD Command - Set Memory Window 1 To Specific Address
The MD command displays (in the memory window) the contents of memory locations beginning at
the specified address. The number of bytes shown depends on the size of the window and
whether ASCII values are being shown. See Memory Window for more information. If a log file is
open, this command also writes the first 16 bytes to the log file.

The MD and MD1 commands are identical.

Syntax:
MD <address>

ICDPPCNEXUS In-Circuit Debugger - User Manual 39

Where:
<address> The starting memory address for display in the upper left corner of the memory

window.

Examples:
>MD 200 Display the contents of memory beginning at hex address 200.
>MD1 100 Display the contents of memory beginning at hex address 100.

11.54 MD2 Command - Set Memory Window 2 To Specific Address
The MD2 command displays the contents of 32 emulation memory locations in the second
memory window. The specified address is the first of the 32 locations. If a logfile is open, this
command also writes the first 16 values to the logfile.

Syntax:
MD2 <address>

Where:
<address> The starting memory address for display in the memory window.

Example:
>MD2 1000 Display the contents of 32 bytes of memory in the second memory window,

beginning at address 1000.

11.55 MM or MEM Command - Modify Memory
The MM command directly modifies the contents of memory beginning at the specified address.
The optional variant specifies whether to fill the block in bytes (.B, the default), in words (.W), or in
longs (.L).
If the command has only an address value, a Modify Memory window appears with the specified
address and its present value and allows entry of a new value for that address. Also, buttons can
be selected for modifying bytes (8 bit), words (16 bit), and longs (32 bit). If only that address is to
be modified, enter the new value in the edit box and press the OK button. The new value will be
placed at the location. If the user wishes to modify several locations at a time, enter the new value
in the edit box and press the >> or << or = button. The new value will be placed at the specified
address, and then the next address shown will be the current address incremented, decremented,
or the same, depending on which button is pressed. To leave the memory modify window, either
the OK or CANCEL buttons must be pressed.
If the MM command includes optional data value(s), the software assigns the value(s) to the
specified address(es) (sequentially), then the command ends. No window will appear in this case.

Syntax:
MM [.B|.W|.L] <address>[<n> ...]

Where:
<address> The address of the first memory location to be modified.
<n> The value(s) to be stored (optional).

Examples:
With only an address:

ICDPPCNEXUS In-Circuit Debugger - User Manual 40

>MM 90 Start memory modify at address $90.

Figure 11-3: Modify Memory Dialog

With a second parameter:

>MM 400 00 Do not show window, just assign value 00 to hex address 400.
>MM.L 200 123456 Place long hex value 123456 at hex address 200.

11.56 MSR Command - Machine Status Register
The MSR command sets the machine status register (MSR) to the specified hexadecimal value.

Syntax:
MSR <n>

Where:
<n> The new hexadecimal value for the MSR.

Example:
> MSR $C4 Assign the value C4 to the MSR.

11.57 NOBR Command - Clear All Breakpoints
Clears all break points.

Syntax:
NOBR

Example:
>NOBR Clears all break points.

ICDPPCNEXUS In-Circuit Debugger - User Manual 41

11.58 PC Command - Program Counter
The PC command assigns the specified value to the program counter (PC). As the PC always
points to the address of the next instruction to be executed, assigning a new PC value changes the
flow of code execution.
An alternative way for setting the Program Counter if source code is showing in a code window is
to position the cursor on a line of code, then press the right mouse button and select the Set PC at
Cursor menu item. This assigns the address of that line to the PC.

Syntax:
PC <address>

Where:
<address> The new PC value.

Example:
>PC 0500 Sets the PC value to 0500.

11.59 QUIET Command
Turns off (or on) refresh of memory based windows. This command can be used on the startup
command line. Default = on.

Syntax:
QUIET

Example:
>QUIET Turns off (or on) refresh of memory based windows

11.60 QUIT or EXIT Command - Quit Program
Quits the program. Identical to EXIT command.

Syntax:
QUIT

Example:
>QUIT Exit the application

Figure 11-4: Confirm Exit Button

11.61 R Command - Use Register Files
The R command open a processor's register files (sold separately by PEmicro) and starts
interactive setup of such system registers as the I/O, timer and COP.

ICDPPCNEXUS In-Circuit Debugger - User Manual 42

Entering this command opens the register files window, which initially shows a list of register files.
Selecting a file brings up a display of values and significance for each bit of the register.

Figure 11-5: Register Display

The user can view any of the registers, modify their values, and store the results back into
Debugger memory. This is a good tool for gaining quick information on a register.

Figure 11-6: Modify Specific Register

An alternate way to bring up the register files window is to press the Register button.

Syntax:
R

Example:
>R Start interactive system register setup.

11.62 R(x) Command - Set R Register
The R(x) command sets the value of the 32-bit General Purpose Register R(x), where (x) is a
value from 0 to 31. For targets that support the 64 bit SPE registers, use the H and L suffixes.

Syntax:
R(x)[H | L] [n]

Where:
(x) Value from 0 to 31, corresponding to which register the user intends to write.
[H | L] Indicates register with most significant bits H or least significant bits L. Default is L.
[n] Value to be written to register.

ICDPPCNEXUS In-Circuit Debugger - User Manual 43

Example:

R3 $CF03D4AA Writes value of $CF03D4AA to General Purpose Register R3.
R3H $CF03D4AA Writes value of $CF03D4AA to General Purpose Register R3H.

11.63 REG or STATUS Command - Show Registers
The REG command displays the contents of the CPU registers in the status window. This is useful
for logging CPU values while running macro files. The STATUS command is identical to the REG
command.

Syntax:
REG

Example:
>REG Displays the contents of the CPU registers.

11.64 REM Command - Place Comment in Macro File
The REM command allows a user to display comments in a macro file. When the macro file is
executing, the comment appears in the status window. The text parameter does not need to be
enclosed in quotes.

Syntax:
REM <text>

Where:
<text> A comment to be displayed when a macro file is executing.

Example:
>REM Program executing Display message "Program executing" during macro file execution.

11.65 RESET Command- Reset Emulation MCU
The RESET command forces a reset of the device into background mode and sets the program
counter to the contents of the reset vector. This command does not start execution of user code.

Example:
>RESET Reset the MCU into background mode.

Syntax:
RESET

11.66 RTVAR Command - Display Variable During Execution
The RTVAR command displays the specified address and its contents in the Variables Window for
viewing during code execution and while the part is running (real time). Variants of the command
display a byte, a word, a long, or a string. As the value at the address changes, the variables
window updates the value. The maximum number of variables is 32. You may also enter the
requisite information using the Add Variable box, which may be called up by double-clicking on the
Variables Window or executing the RTVAR command without a parameter.

ICDPPCNEXUS In-Circuit Debugger - User Manual 44

In the ASCII displays, a control character or other non-printing character is displayed as a period
(.). The byte, word, long, or string variant determines the display format:

Byte (.B): hexadecimal (the default)
Word (.W): hexadecimal
Long (.L): hexadecimal
String (.S): ASCII characters

To change the format from the default of hexadecimal, use the Add Variable box.

The optional <n> parameter specifies the number of string characters to be displayed; the default
value is one. The <n> parameter has no effect for byte, word, or long values.

Syntax:
RTVAR [.B|.W|.L|.S] <address> [<n>]

Where:
<address> The address of the memory variable.
<n> Optional number of characters for a string variable; default value is 1, does not

apply to byte or word variables.

Examples:
>RTVAR C0 Show byte value of address C0 (hex and binary)
>RTVAR.B D4 Show byte value of address D4 (hex and binary)
>RTVAR.W E0 Show word value of address E0 (hex & decimal)
>RTVAR.S C0 5 Show the five-character ASCII string at hex address C0.

11.67 SAVEDESK Command - Save Desktop Settings
The SAVEDESK command saves the desktop settings for the application when it is first opened or
for use with the LOADDESK command. The settings saved are window position, size, visibility, etc.

Syntax:
SAVEDESK

Example:
>SAVEDESK Save window settings for the application.

11.68 SERIAL Command - Set Up Parameters For Dumb Terminal
Sets up parameters for serial port. This port may then be attached to the Serial Port on your target
for real-time debugging of communications software. See SERIALON command. COM1 or COM2,
baud = 9600, 4800, 2400, 1200, 600, 300, 150 or 110, parity = N, E or O, data bits = 7 or 8, stop
bits = 1 or 2. Example: SERIAL 1 9600 n 8 1

Syntax:
SERIAL (1 or 2) (baud) (parity) (data bits) (stop bits)

ICDPPCNEXUS In-Circuit Debugger - User Manual 45

Where:

1 or 2 COM1 or COM2
baud Baud rate ranging from 110 to 9600
parity No, Even or Odd parity
data bits 7 or 8 data bits
stop bits 1 or 2 stop bits

Example:
>SERIAL 2 9600 E 8 2 Sets serial port to Com2 port with 9600 baud rate, even parity, 8 data

bits and 2 stop bits

11.69 SERIALOFF Command - Disable Status Window As Dumb Terminal
Turns off serial port use during GO.

Syntax:
SERIALOFF

Example:
>SERIALOFF Turns off serial port use during GO command

11.70 SERIALON Command - Enable Status Window As Dumb Terminal
Turns the communication window into a dumb terminal during a GO command using the serial port
set up with the SERIAL command. To terminate the GO command from the keyboard, hit F1.

Syntax:
SERIALON

Example:
>SERIAL 2 9600 N 8 1
>SERIALON
>GO

11.71 SHOWCODE Command - Display Code at Address
The SHOWCODE command displays code in the code windows beginning at the specified
address, without changing the value of the program counter (PC). The code window shows either
source code or disassembly from the given address, depending on which mode is selected for the
window. This command is useful for browsing through various modules in the program. To return
to code where the PC is pointing, use the SHOWPC command.

Syntax:
SHOWCODE <address>

Where:
<address> The address or label where code is to be shown.

ICDPPCNEXUS In-Circuit Debugger - User Manual 46

Example:
>SHOWCODE 200 Show code starting at hex location 200.

11.72 SHOWMMU Command- Display MMU Information
Displays MMU information.

11.73 SHOWPC Command - Display Code at PC
The SHOWPC command displays code in the code window starting from the address in the
program counter (PC). The code window shows either source code or disassembly from the given
address, depending on which mode is selected for the window. This command is often useful
immediately after the SHOWCODE command.

Syntax:
SHOWPC

Example:
>SHOWPC Show code from the PC address value.

11.74 SHOWSPR Command - Display SPR Information
Displays SPR information.

11.75 SHOWTRACE Command - View Trace Buffer After TRACE Command
Example:
>SHOWTRACE Displays the trace buffer logged during a previously executed TRACE

command.

11.76 SNAPSHOT Command
Takes a snapshot (black and white) of the current screen and sends it to the capture file, if one
exists. Can be used for test documentation and system testing.

Example:
>LOGFILE SNAPSHOT This command will open a file by the name SNAPSHOT.LOG and store

all the commands at the status window.
>SNAPSHOT This command will take a snapshot of all the open windows of ICD and

store it in SNAPSHOT.LOG file.
>LF This command will close SNAPSHOT.LOG file

You can open the SNAPSHOT.LOG file with any text editor, such as EDIT.

11.77 SOURCEPATH Command - Search For Source Code
Either uses the specified filename or prompts the user for the path to search for source code that is
not present in the current directory.

Syntax:
SOURCEPATH filename

ICDPPCNEXUS In-Circuit Debugger - User Manual 47

Where:
filename Name of the source file

Example:
>SOURCEPATH d:\mysource\myfile.asm

11.78 SPR Command - Display/Modify Special Purpose Register
The SPR Command displays the value of the Special Purpose Register (x). The user can then
enter a new value for the register or a simple carriage return to keep the same value. The
addresses used are the same as for the MTSPR or MFSPR instructions. This is used to setup the
LR, CTR, IMMR, and other special purpose registers.

Syntax:
SPR (x) [n]

Where:
(x) Value from 0 to 1023 corresponding to which register the user intends to write.

Note: The default debugger base is hexadecimal, so to force the register number to be base 10, add the
character T as a suffix.

[n] Optional Value to be written to register.

Example:
SPR 638T Displays the IMMR special purpose register.

11.79 SS Command - Source Step
Does one step of source level code. Source must be showing in the code window.

Syntax:
SS

Example:
>SS Does one step of source level code.

11.80 ST, STEP/STEPALL or T Commands - Single Step
The ST or STEP or T command steps through one or a specified number of assembly instructions,
beginning at the current Program Counter (PC) address value, and then halts. When the number
argument is omitted, one instruction is executed. If you enter the ST command with an <n> value,
the command steps through that many instructions.
The STEPALL command performs the same function (ST, STEP, T) on each core of a multi-core
device.

Syntax:
STEP <n>
 or

ICDPPCNEXUS In-Circuit Debugger - User Manual 48

ST <n>
or
T <n>

STEPALL <n>

Where:
<n>The hexadecimal number of instructions to be executed by each command.

Example:
>STEP Execute the assembly instruction at the PC address value.
>ST 2 Execute two assembly instructions, starting at the PC address value.
>STEPALL 2 Execute two assembly instructions on each core of a multi-core device, starting at

the PC address value.

11.81 STATUS or REG Command - Show Registers
The STATUS command displays the contents of the CPU registers in the status window. This is
useful for logging CPU values while running macro files. The REG command is identical to the
STATUS command.

Syntax:
STATUS

Example:
>STATUS Displays the contents of the CPU registers.

11.82 STEP Command - See ST, STEP/STEPALL, T

11.83 STEPALL Command - See ST, STEP/STEPALL, T

11.84 STEPFOR Command - Step Forever
STEPFOR command continuously executes instructions, one at a time, beginning at the current
Program Counter address until an error condition occurs, a breakpoint occurs, or a key or mouse is
pressed. All windows are refreshed as each instruction is executed.

Syntax:
STEPFOR

Example:
>STEPFOR Step through instructions continuously.

11.85 STEPTIL Command - Single Step to Address
The STEPTIL command continuously steps through instructions beginning at the current Program
Counter (PC) address until the PC value reaches the specified address. Execution also stops if a
key or mouse is pressed, a breakpoint set with a BR command occurs, or an error occurs.

ICDPPCNEXUS In-Circuit Debugger - User Manual 49

Syntax:
STEPTIL <address>

Where:
<address> Execution stop address. This must be an instruction address.

Example:
>STEPTIL 0400 Execute instructions continuously until PC hex value is 0400.

11.86 SYMBOL Command - Add Symbol
The SYMBOL command creates a new symbol, which can be used anywhere in the debugger, in
place of the symbol value. If this command is entered with no parameters, it will list the current
user defined symbols. If parameters are specified, the SYMBOL command will create a new
symbol.
The symbol label is case insensitive and has a maximum length of 16T. It can be used with the
ASM and MM command, and replaces all addresses in the Code Window (when displaying
disassembly) and Variables Window.

The command has the same effect as an EQU statement in the assembler.

Syntax:
SYMBOL [<label> <value>]

Where:
<label> The ASCII-character string label of the new symbol.
<value> The value of the new symbol (label).

Examples:
>SYMBOL Show the current user�defined symbols.
>SYMBOL timer_control $08 Define new symbol 'timer_control', with hex value 08.

Subsequently, to modify hex location 08, enter the command 'MM
timer_control'.

11.87 T Command - See ST, STEP/STEPALL, T

11.88 TIME Command - Displays Real Time Elapsed During Code Execution
Will give you an estimate of real time to execute the command from one address to another.
Set breakpoint at second address. Go from first address. If only one address given, it is the start
address. If no stop address is given, the ICD will run forever or until a breakpoint is encountered or
a key on the keyboard is hit. If no address is given the command is a "Time forever" command.
When the command ends (either a break or a key) the debug window will show the amount of real-
time that passed since the command was initiated.

Syntax:
TIME <[add1] [add2]>

ICDPPCNEXUS In-Circuit Debugger - User Manual 50

Where:
add1 Starting address
add2 Ending address

Example:
>TIME 800 805 Will give you an estimate of real time to execute the command from hex

location 800 to hex location 805.

11.89 _TR Command - Add Register Field Description to VAR Window
The _TR command is used to add a register field description to the VAR Window.

Syntax:
_TR

Example:
_TR This allows the user to add peripheral register fields to the variables window to monitor

register settings.

11.90 TRACE Command - Monitors CPU Execution & Logs Instructions
The TRACE command is similar to the GO command except that execution does not occur in real-
time. The ICD software monitors the execution of the CPU and logs the address of (up to) the last
256 instructions that have been executed into an internal array .
The trace executes from the first address until the breakpoint at the second address. If only one
address given, it is the start address. If no stop address is given, the ICD will run forever or until a
breakpoint is reached or a key on the keyboard is hit. If no address is given the command is a
"Trace forever" command.
After execution, you may use the SHOWTRACE command or hit F7 to view the trace buffer.

Syntax:
TRACE <[add1] [add2]>

Where:
add1 Starting address
add2 Ending address

Example:
>TRACE 800 805 Will give you an estimate of real time to execute the command from hex

location 800 to hex location 805.

11.91 UPLOAD_SREC Command - Upload S-Record to Screen
The UPLOAD_SREC command uploads the content of the specified program memory block
(range), in .S19 object file format, displaying the contents in the status window. If a log file is
opened, then UPLOAD_SREC will put the information into it as well. Same as P_UPLOAD_SREC.

Note: If the UPLOAD_SREC command is entered, sometimes the memory contents scroll through the
debug window too rapidly to view. Accordingly, either the LOGFILE command should be used,
which records the contents into a file, or use the scroll bars in the status window.

Syntax:

ICDPPCNEXUS In-Circuit Debugger - User Manual 51

UPLOAD_SREC <startrange> <endrange>

Where:
<startrange> Beginning address of the memory block.
<endrange> Ending address of the memory block (range)

Example:
>UPLOAD_SREC 300 7FFUpload the 300�7FF memory block in .S19 format.

11.92 VAR Command - Display Variable
The VAR command displays the specified address and its contents in the Variables Window for
viewing during code execution. Variants of the command display a byte, a word, a long, or a string.
As the value at the address changes, the variables window updates the value. The maximum
number of variables is 32. You may also enter the requisite information using the Add Variable
box, which may be called up by double-clicking on the Variables Window or executing the VAR
command without a parameter.
In the ASCII displays, a control character or other non-printing character is displayed as a period
(.). The byte, word, long, or string variant determines the display format:

Byte (.B): hexadecimal (the default)
Word (.W): hexadecimal
Long (.L): hexadecimal
String (.S): ASCII characters

To change the format from the default of hexadecimal, use the Add Variable box.

The optional <n> parameter specifies the number of string characters to be displayed; the default
value is one. The <n> parameter has no effect for byte, word, or long values.

Syntax:
VAR [.B|.W|.L|.S] <address> [<n>]

Where:
<address> The address of the memory variable.
<n> Optional number of characters for a string variable; default value is 1, does not

apply to byte or word variables.

Examples:
>VAR C0 Show byte value of address C0 (hex and binary)
>VAR.B D4 Show byte value of address D4 (hex and binary)
>VAR.W E0 Show word value of address E0 (hex & decimal)
>VAR.S C0 5 Show the five-character ASCII string at hex address C0.

11.93 VERIFY Command - Compare Program Memory & S-Record
Compares the contents of program memory with an S-record file. You will be prompted for the
name of the file. The comparisons will stop at the first location with a different value.

ICDPPCNEXUS In-Circuit Debugger - User Manual 52

Syntax:
VERIFY

Example:
>LOADALL test.s19
>VERIFY As soon as you press <ENTER> key it will give you a message "Verifying...verified"

11.94 VERSION or VER - Display Software Version
The VERSION command displays the version and date of the software. VER is an alternate form
of this command.

Syntax:
VERSION

Examples:
>VERSION Display debugger version.
>VER Display debugger version.

11.95 WATCHDOG Command - Disable Active Watchdog
Disables watchdog timer (toggles the state of the SWE bit in the SYPCR). Remember that this
register may only be written once following a reset of the hardware. Reset enables the watchdog
timer.

Syntax:
WATCHDOG

Example:
>WATCHDOG

11.96 WHEREIS Command- Display Symbol Value
The WHEREIS command displays the value of the specified symbol. Symbol names are defined
through source code or the SYMBOL command.

Syntax:
WHEREIS <symbol> | <address>

Where:
<symbol> A symbol listed in the symbol table.
<address> Address for which a symbol is defined.

Examples:
>WHEREIS START Display the symbol START and its value.
>WHEREIS 0300 Display the hex value 0300 and its symbol name if any.

ICDPPCNEXUS In-Circuit Debugger - User Manual 53

11.97 XER Command - Integer Exception Register
The XER command sets the integer exception register (XER) to the specified hexadecimal value.

Syntax:
XER <n>

Where:
<n> The new hexadecimal value for the XER.

Example:
>XER $C4 Assign the value C4 to the XER.

12 Errors
Various errors may appear in the Status Window during your debugging. Most are self-
explanatory. The following four errors are due to the debugger's interface with the background
mode of the processor:
Warning Not ready response from chip.
Warning BERR Terminated bus cycle���Debugger Supplied DSACK
Warning Illegal command error from chip ��� Debugger Supplied DSACK
All four errors are probably due to some type of problem accessing memory. The Debugger will fill
most bad memory accesses with XX.

Note: The debugger rewrites the windows showing on the screen often. If a window is showing memory
that does not exist, one of these errors will occur every time the debugger tries to update that
window. This concerns the two memory windows and the code window. Additionally, reading or
writing non-existing memory areas mapped internally may cause one of these errors.

In most cases the debugger will try to recover. If the system starts acting erratic after this message,
it may be due to a fatal memory error and you may have to reset the system.

13 Variable Length Encoding (VLE)
The ICD disassembly windows display both the traditional PowerPC (BookE) and VLE sets of
target instructions. While single stepping the target, ICD's disassembly windows will automatically
update to display the appropriate instruction set.

14 Register Display
Are you tired of looking through manual pages for register descriptions? PEmicro has the ultimate
solution for this problem.
The R command lets you look at and modify the registers and the register fields in both a symbolic
and numeric format. When you type the R command, it searches the directory which contains the
ICD program for any files with the .REG extension (REGister files). Each of these files describes a
block of registers. The block name (1st line of .reg) file is displayed in a pick window. If you select
a register block, each of the registers in that block has its address, name, and description listed in
a pick window. If you select a register, its current value is read from the device and displayed both
symbolically and numerically. You may then edit the register contents.
If you modified the displayed register contents and exit the register display, you are asked if you
want to write the new value back to the device register. You should be careful of any "WRITE
ONLY" registers, since they can not be read but will be written.
The .REG files for most Motorola modules are available at nominal cost from PEmicro

ICDPPCNEXUS In-Circuit Debugger - User Manual 54

Microcomputer Systems. These files are in ASCII and it is possible to create your own files for
devices not supported by PEmicro.

15 'Add Variable' Box
The Add Variable box allows the user to display a variable specified by label or memory address,
and to choose the format and base of the data that is displayed. The Add Variable box pops up
when the user double-clicks the Variables Window.

Figure 15-1: Add Variable Box

Use the Variable / Address input field to enter the label or memory location for the data you wish to
be displayed.
Below, select from the Type and Base buttons to specify in which format and base you would like
the data to be displayed.

16 ELF/DWARF SUPPORT
The In-Circuit Debugger supports loading files of type ELF/DWARF, which provides C source-level
debugging. The ICD will process files that adhere to the following specifications:

Executable and Linking Format (ELF)
System V Application Binary Interface, edition 4.1

Debug With Arbitrary Record Format (DWARF)
DWARF Debugging Information Format Revision 2.0/3.0

Note that the debugger will load DWARF version 2.0/3.0 information only. No other DWARF
version is compatible with the ICD.
Some processors have ELF/DWARF supplemental specifications in addition to the general
specifications above. The ICD adheres to all available processor supplements.

16.1 SUPPORTED FEATURES
· Source-Level Code View
· Disassembly-Level Code View

ICDPPCNEXUS In-Circuit Debugger - User Manual 55

· Single-Stepping Source
· Running and Stopping Source
· Loading Object Data to MCU Memory:
· Base Type Variable View
· Array Variable View
· Structure/Union Variable View
· Enumerated Type Variable View
· Typedef Variable View
· Global Variable View
· Location Relative (e.g. Stack Relative) Variable View
· Register Based Variable View
· Variable Scoping:
· Auto-typing of Variables in VAR Window
· Modifying Variables
Currently, the ICD does not support C macro information.

16.2 GETTING STARTED
Issue the BETA command in the debugger to enable the ELF/DWARF capabilities.
The HLOAD command loads ELF/DWARF source files.
The HLOADMAP command loads DWARF debugging information only. No executable object code
is loaded.
The HSTEP command, or SS, single-steps one high-level source line. HSTEPALL performs this
same action (HSTEP) on each core of a multi-core device.
The HSTEPFOR command continually steps high-level instructions until the user aborts by
pressing a key.
The HGO command starts full-speed execution and attempts to stop on a high level instruction
when aborted by the user. HGOALL performs this same action (HGO) on each core of a multi-core
device.
The HSTEP/HSTEPALL, HSTEPFOR, and HGO/HGOALL commands are identical to the STEP/
STEPALL, STEPFOR, and GO/GOALL commands with the following exceptions:
(1) While assembly instructions are executed between the high-level language lines, the Variable,
Memory, and Source Code windows are not updated. The Disassembly and CPU windows are
updated for every low-level instruction. At the next high-level instruction boundary, all windows are
updated (unless in GO mode).
(2) When the user aborts the current execution command, the debugger executes up to 20 steps
while trying to find the next high-level language instruction boundary. The debugger will attempt to
show source automatically. If, in 20 steps, it can not find the boundary of a high-level source code
instruction, it will stop and show disassembly. To see source again, use the HSTEP/HTEPALL
command or right click on the Source Code window and select Show Source Module.
After loading the code, depending upon the software application, you may have to set the program
counter (PC or IP) to the reset vector of your code. There is not usually high-level source code at
this location. Instead, there is often compiler code used to initialize your variables, heap, and so
forth. The reset code should call the "main" function. Use the command "GOTIL main" to execute
code to the beginning of the "main" function. At this point, you should see source code. It is not
correct to set the PC directly to the main routine, as this would skip the compiler's initialization.

16.3 DISPLAYING VARIABLES
The debugger Variable window will show global and static variables as well as location relative
variables. A location relative variable is typically a local variables on the application stack.

ICDPPCNEXUS In-Circuit Debugger - User Manual 56

However, the compiler may indicate other variable types as location relative and may use many
different location schemes for variables. Some variables may change location depending on the
value of the PC. The ICD supports all of the DWARF 2.0 location possibilities.
The debugger will show variables whose location is a register. Compilers will often store temporary
variables in CPU registers of the processor. If you attempt to look at the address of a register
variable by adding the symbol &I (where I is the variable) to the Variables window, the debugger
should indicate the register in which the variable is stored.
The ICD supports scoping of variables. If you put a variable name in the Variables window, the
debugger will show the variable of the same name that is currently in scope. If you had a global
integer variable, temp, and a local float variable, temp, within the routine init_port, the float would
be shown while you step through the init_port routine. Otherwise, the Variable window would
display the integer variable. When a variable value equates to [Not Accessible], this means the
variable specified is either out of scope or doesn't exist.
The following symbols may be added to a variable name in the Variables window. Note that pointer
variables are displayed in red.

& dereference
* reference
. access to union or structure member
-> pointer access to union or structure member
[] array subscript

For example:

int TintGlobal;
int *ptrTint;
int TmultiArray[3][3][3];

struct Tstruct {
 int ii;
 int jj;
 short ll;
} TstructInstance;

union Tunion {
 unsigned long TuLongUnion;
 struct Tstruct TstructUnion
} TunionInstance;

union Tunion *TunionPointer;

ICD commands:

var TintGlobal
The value of TintGlobal

ICDPPCNEXUS In-Circuit Debugger - User Manual 57

var &TintGlobal
The address of TintGlobal

var TmultiArray[0][1][2]
The value of this element of the array

var TstructInstance.ii
The value of this member of the structure

var TunionPointer->TuLongUnion
The value of this union member, the union pointed to by TunionPointer

16.4 Examining A Variable
You may view the entire contents of a structure or array variable by double-clicking the entry in the
Variables Window. Alternatively, right-click on an entry in the Variables Window and select
"Examine Variable" in its popup menu.
The Examine Variable dialog is available for ELF/DWARF2.0 debugging for the following variable
types:

Structures - Displays the members of the structure.
Arrays - Displays elements of non-dynamic arrays.
Pointer - Displays dereferenced pointer to non-dynamic variable.
Other types - Dialog is not available.

In the Examine Variable window, click the plus sign to expand the variable.

Figure 16-1: Simple Structure

Figure 16-2: More Complex Structure

ICDPPCNEXUS In-Circuit Debugger - User Manual 58

Add an array element or structure member to the Variables Window by double-clicking on the
entry, or use the "Add to Variables Window" button.

16.5 ELF PROGRAM HEADERS
Program headers, included in every executable ELF/DWARF file, describe how the application
object code is to be loaded to the target. Two values in each program header entry, defined by the
System V ABI as p_paddr and p_vaddr, are available to provide a load address for a particular
group of code. For executable files, the p_vaddr field is typically used to provide the load address.
However, some compilers, such as the GNU compiler, may utilize the p_paddr field instead.
When the PEmicro debugger loads the ELF/DWARF file, it may detect the use of the non-standard
p_paddr field in the ELF program header. In this instance, the debugger will display a dialog box
that will ask the user what to do. Generally, when using the GNU tools, click "Yes" in the dialog box
to load code using the non-standard p_paddr field.
For a complete description of ELF Program Headers, see the System V ABI (ELF) specification.

16.6 LOADING AN ELF/DWARF 2.0/3.0 APPLICATION (HLOAD/HLOADMAP)
The Elf/Dwarf 2.0 file contains two types of information:
(1) Elf Binary Image : This contains all the instructions and data which make up the application
which will run on the target microprocessor. This part of the image will eventually reside in the flash
memory of the target, but during debug may also be loaded into the RAM of the target.
(2) Dwarf Debug Information : The debug information is used by the debugger to allow the user to
debug the binary image. This contains source file line number information, variable names,
variable addresses, and so forth. This information is loaded into the debugger only and is not
presented to the target microcontroller.
The two most common configurations for loading an Elf/Dwarf 2.0 file are:
(1) Binary image to be loaded into FLASH : If the binary image is to be loaded into flash, it must
be done prior to entering ICD which does not program flash. PEmicro’s PROG flash programmer
may be used to program the image into flash. Upon entering the ICD, with the binary image
already resident in flash, the user would use the HLOADMAP command to load the debug
information portion of the Elf/Dwarf file into the debugger.
(2) Binary image needs to be loaded into RAM : If the binary image of the application is to be
loaded into RAM on the target, the HLOAD command is used. The HLOAD command loads both
the binary image into the target microprocessor’s RAM as well as loads the dwarf debug

ICDPPCNEXUS In-Circuit Debugger - User Manual 59

information into the debugger. Before loading the binary image, the user should make sure that the
RAM is turned on at the proper address.
The STATUS window will display the amount of debug and object information loaded from the Elf/
Dwarf file, in a manner similar to the following window:

Figure 16-3: Status Window

By default, when an Elf/Dwarf object is loaded, the program counter (PC) is set to point to the start
of the demonstration application code.

16.7 RUNNING UNTIL THE START OF SOURCE CODE
After loading an Elf/Dwarf file, it may be that the code window still points to disassembly and does
not initially show the loaded applications source code:

Figure 16-4: Code Window: Source

This is because, before running the user’s main() function, the compiler must first execute some
initialization code which does not have corresponding debug information. To run past the compiler
initialization code, issue the “gotil main” command in the status window. Note that the labels are
case sensitive and that the main label should be all lowercase. This will set a breakpoint at the
beginning of the main() routine in main.c and start the processor running. Execution should stop
almost immediately and the PC should be pointing to valid source code. This source code will
appear in the source code window, similar to the following:

Figure 16-5: Code Window: Source (main.c)

Also, instead of using the GOTIL command, the user could have stepped through the initialization
code (using the STEP or HSTEP commands) and would have eventually reached the main()
function.

ICDPPCNEXUS In-Circuit Debugger - User Manual 60

16.8 STEPPING THROUGH C LEVEL INSTRUCTIONS
The PEmicro debugger implements a high-level language source step command, which may be
executed by using the HSTEP command in the status window or by clicking the high-level step
button on the debugger button bar. Each time the high-level language source is stepped, the
debugger will rapidly single step assembly level instructions until the next source instruction is
encountered, at which point execution will cease. While the debugger is fast single-stepping, the
only on-screen value which will be updated is the PC (by default). When the debugger reaches the
next source instruction, all visible windows will be updated with data read from the target. Note that
using the HSTEP command does not run code in real-time. Real-time execution is described in the
next section.
The user should step several source-level instructions as this point. Note that some instructions
will take longer to step than others, because each C level instruction may consist of a greater or
fewer number of underlying assembly instructions than others.

	1 Introduction
	1.1 Trial Edition
	1.2 ICDPPCNEXUS Features At A Glance

	2 Command Line Parameters
	3 Nomenclature
	4 User Interface
	4.1 CPU Window
	4.2 Status Window
	4.3 Memory Window
	4.4 Variables Window
	4.5 Code Window
	4.6 Using The Code Window
	4.7 Colors Window

	5 Dual Core Considerations
	6 Command Recall
	7 CPU Values & Names
	8 Boot Assist Module
	9 Connection To Target
	10 Running
	11 Commands
	11.1 ADDSPR Command – Set User-Defined SPR Name
	11.2 ASCIIF3 and ASCIIF6 Commands – Toggle Memory Window
	11.3 BELL Command - Sound Bell
	11.4 BF or BLOCK FILL Command - Fill Block
	11.5 BGND_TIME Command - Log Time Since BGND Instruction
	11.6 BR Command - Set Or Clear Breakpoint
	11.7 CAPTURE Command - Open Capture File
	11.8 CAPTUREOFF Command - Turn Off Capture
	11.9 CLEARMAP Command - Clear Map File
	11.10 CLEARSYMBOL Command - Clear User Symbols
	11.11 CLEARVAR Command - Remove All Variables
	11.12 CODE Command - Show Disassembled Code
	11.13 COLORS Command - Set Colors of Simulator
	11.14 COUNT Command - Display Execution Count
	11.15 COUNTER Command - Add Or Subtract From Counter Table
	11.16 CR Command - Condition Register
	11.17 CTR Command - Counter Register
	11.18 DASM Command - Disassemble Memory
	11.19 DUMP Command - Dump Data Memory to Screen
	11.20 DUMP_TRACE Command - Dump Trace Buffer
	11.21 EVAL Command- Evaluate Expression
	11.22 EXECUTE_OPCODE Command - Treats Numeric Parameter As Opcode And Executes
	11.23 EXIT or QUIT Command - Exit Program
	11.24 FPSCR Command - Floating Point Status And Control Register
	11.25 FR(X) Command - Set Floating Point Register
	11.26 G, GO/GOALL, or RUN Commands
	11.27 GOEXIT Command - Begin Program Execution W/O Breakpoints & Terminate Debugger
	11.28 GOTIL Command - Execute Program until Address
	11.29 GOTILROM Command - Execute Fast Single Step
	11.30 HELP Command - Open Help File
	11.31 HGO Command - Begin Program Execution
	11.32 HGOALL Command - Begin Program Execution (Multi-Core)
	11.33 HLOAD Command - Load ELF/DWARF Object
	11.34 HLOADMAP Command - Load DWARF/MAP Debug Info
	11.35 HSTEP/HSTEPALL - High-Level Language Source Step
	11.36 HSTEPFOR - Step Forever (High-Level Language)
	11.37 LISTON Command - Show Info during Steps
	11.38 LOAD Command (Legacy)
	11.39 LOAD_BIN Command - Load A Binary File
	11.40 LOADALL Command (Legacy)
	11.41 LOADV Command (Legacy)
	11.42 LOADV_BIN Command - Load A Binary File & Verify
	11.43 LOADDESK Command - Load Desktop Settings
	11.44 LOADMAP Command (Legacy) - Load Map File
	11.45 LOADV Command (Legacy)
	11.46 LF or LOGFILE Command - Open / Close Log File
	11.47 LPTx
	11.48 LR Command - Link Register
	11.49 MACRO or SCRIPT - Execute a Batch File
	11.50 MACROEND Command - Stop Saving Commands to File
	11.51 MACROSTART - Save Debug Commands to File
	11.52 MACS Command - List Macros
	11.53 MD Command - Set Memory Window 1 To Specific Address
	11.54 MD2 Command - Set Memory Window 2 To Specific Address
	11.55 MM or MEM Command - Modify Memory
	11.56 MSR Command - Machine Status Register
	11.57 NOBR Command - Clear All Breakpoints
	11.58 PC Command - Program Counter
	11.59 QUIET Command
	11.60 QUIT or EXIT Command - Quit Program
	11.61 R Command - Use Register Files
	11.62 R(x) Command - Set R Register
	11.63 REG or STATUS Command - Show Registers
	11.64 REM Command - Place Comment in Macro File
	11.65 RESET Command- Reset Emulation MCU
	11.66 RTVAR Command - Display Variable During Execution
	11.67 SAVEDESK Command - Save Desktop Settings
	11.68 SERIAL Command - Set Up Parameters For Dumb Terminal
	11.69 SERIALOFF Command - Disable Status Window As Dumb Terminal
	11.70 SERIALON Command - Enable Status Window As Dumb Terminal
	11.71 SHOWCODE Command - Display Code at Address
	11.72 SHOWMMU Command- Display MMU Information
	11.73 SHOWPC Command - Display Code at PC
	11.74 SHOWSPR Command - Display SPR Information
	11.75 SHOWTRACE Command - View Trace Buffer After TRACE Command
	11.76 SNAPSHOT Command
	11.77 SOURCEPATH Command - Search For Source Code
	11.78 SPR Command - Display/Modify Special Purpose Register
	11.79 SS Command - Source Step
	11.80 ST, STEP/STEPALL or T Commands - Single Step
	11.81 STATUS or REG Command - Show Registers
	11.82 STEP Command - See ST, STEP/STEPALL, T
	11.83 STEPALL Command - See ST, STEP/STEPALL, T
	11.84 STEPFOR Command - Step Forever
	11.85 STEPTIL Command - Single Step to Address
	11.86 SYMBOL Command - Add Symbol
	11.87 T Command - See ST, STEP/STEPALL, T
	11.88 TIME Command - Displays Real Time Elapsed During Code Execution
	11.89 _TR Command - Add Register Field Description to VAR Window
	11.90 TRACE Command - Monitors CPU Execution & Logs Instructions
	11.91 UPLOAD_SREC Command - Upload S-Record to Screen
	11.92 VAR Command - Display Variable
	11.93 VERIFY Command - Compare Program Memory & S-Record
	11.94 VERSION or VER - Display Software Version
	11.95 WATCHDOG Command - Disable Active Watchdog
	11.96 WHEREIS Command- Display Symbol Value
	11.97 XER Command - Integer Exception Register

	12 Errors
	13 Variable Length Encoding (VLE)
	14 Register Display
	15 'Add Variable' Box
	16 ELF/DWARF SUPPORT
	16.1 SUPPORTED FEATURES
	16.2 GETTING STARTED
	16.3 DISPLAYING VARIABLES
	16.4 Examining A Variable
	16.5 ELF PROGRAM HEADERS
	16.6 LOADING AN ELF/DWARF 2.0/3.0 APPLICATION (HLOAD/HLOADMAP)
	16.7 RUNNING UNTIL THE START OF SOURCE CODE
	16.8 STEPPING THROUGH C LEVEL INSTRUCTIONS

